头像

姓名:彭林宁

职称:副教授

电话:

办公室:无线谷6号楼6309室

个人主页:

邮箱:pengln@seu.edu.cn

教育背景

本科和研究生毕业于东南大学信息科学与工程学院,博士年毕业于法国雷恩应用科学研究院(INSA-Rennes),法国科学院(CNRS)下辖雷恩电信电子研究实验室(IETR)。2014年回国后在东南大学信息安全研究中心工作。


学术兼职

研究领域

研究的主要方向为有线/无线通信中的物理层安全、射频/设备指纹特征提取与识别、利用无线信道特征进行密钥生成以及软件无线电技术。

硕士/博士研究生招收具有电子信息、网络空间安全、通信与信号处理、计算机等背景的学生。有软件无线电平台以及相关软硬件处理经历的同学优先考虑。

研究概况

具体的研究方向介绍如下:

射频/设备指纹特征提取与识别:在光纤、以太网以及无线车联网,移动通信网络以及局域网中研究基于设备指纹特征的识别及认证技术。利用人工智能及机器学习技术实现高精度的基于设备物理特征的个体识别。该技术可以为物联网、有线局域网以及其他通信网络的接入认证提供一种防伪造、欺骗、篡改攻击的安全机制。(现已搭建多类无线设备射频指纹提取实验平台,具有先进的射频指纹测量、分析以及验证系统平台。实验室配备深度学习服务器,满足机器学习研究工作需要。)

利用无线信道特征进行密钥生成:利用通信双方无线信道的互易性、随机时变性以及地理空间位置唯一性的特征,实时生成通信双方对称的加密密钥。通过研究无线通信过程中的设备指纹与无线信道特征的影响,无线信道的随机源的构建,高效信息调和技术等,有效解决通信系统中的密钥分配和安全通信问题。(现已搭建实时测量不同环境下无线信道特征的密钥生成系统,能够完成单天线到多天线的实验测量及研究工作。)

软件无线电技术:基于软件无线电技术设计各类通信原型验证系统,为不同的技术研究提供原型验证平台。设计实现能够完成不同任务的软件无线电收发系统。(长期积累软件无线电平台系统的设计及研究,现有国产自研以及进口的软件无线电平台多部,能够完成从单天线到多天线的实验系统搭建)

最近动态

研究课题

主持项目:

国家自然科学基金《射频指纹表征的统一性与平稳性问题研究》 (2022-2025)

广东省重点研发项目《量子密钥分发关键技术》,课题《无线物理安全密钥分发系统》负责人(2020-2024);

国家自然科学基金《光通信系统基于物理层指纹的识别与认证安全技术研究》 (2017-2019)

江苏省自然科学基金《基于物理层特征的无线通信安全技术》 (2017-2019)

主要参与项目:

网络通信与安全紫金山实验室前沿交叉课题项目《端到端物理安全的移动保密通信技术》(2019-2022) ;

国家重点研发项目国际科技创新合作重点专项《基于量子密钥的物联网安全体系和关键技术联合研发》(2020-2023);

国家自然科学基金移动通信安全基础理论与关键技术专项项目《动态构造物理特征的空口安全通信理论方法研究》(2020-2021)

国家重点研发计划《异构物体资源建模与交换关键技术》 (2019-2022)

江苏省重点研发项目《电力物理网边缘接入安全关键技术研发》(2019-2022)

国家自然科学基金《面向未来移动通信的物理层安全技术研究》 (2016-2019)

国家自然科学基金《基于射频指纹的无线目标识别与定位技术研究》 (2017-2019)。

奖励与荣誉

2022年获得东南大学第十八届吾爱吾师评选之最受欢迎教师

入选2023年“斯坦福全球前2%科学家” https://elsevier.digitalcommonsdata.com/datasets/btchxktzyw/6

课程信息

本科生二年级专业基础课程《网络空间安全数学基础》

本科生三年级课程《Digital Communications》(全英文授课,研讨课)

本科生全校公选课程《信息安全导论》

学术成果

学术论文

[72][C] M. Wang, L. Peng, L. Xie, J. Zhang, M. Liu and H. Fu, Design of Noise Robust Open-Set Radio Frequency Fingerprint Identification Method, IEEE INFOCOM 2024 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Vancouver, BC, Canada, 2024, pp. 1-6

[71][J] P. Yin, L. Peng et al., Multi-Channel CNN-Based Open-Set RF Fingerprint Identification for LTE Devices, in IEEE Transactions on Cognitive Communications and Networking

[70][J] W. Jing, L. Peng, H. Fu and A. Hu, An Authentication Mechanism Based on Zero Trust With Radio Frequency Fingerprint for Internet of Things Networks, in IEEE Internet of Things Journal, vol. 11, no. 13, pp. 23683-23698, 1 July1, 2024

[69][J] L. Peng, Z. Wu, J. Zhang, M. Liu, H. Fu and A. Hu, Hybrid RFF Identification for LTE Using Wavelet Coefficient Graph and Differential Spectrum, in IEEE Transactions on Vehicular Technology, vol. 73, no. 8, pp. 11621-11636, Aug. 2024

[68][J] L. Peng, H. Peng, H. Fu and M. Liu, Channel-Robust Radio Frequency Fingerprint Identification for Cellular Uplink LTE Devices, in IEEE Internet of Things Journal, vol. 11, no. 10, pp. 17154-17169, 15 May15, 2024

[67][J] H. Fu, Y. Sun, L. Peng and M. Liu, Channel-Resilient RF Fingerprint Identification Based on Nonlinear Features With Memory Effect, in IEEE Communications Letters, vol. 28, no. 4, pp. 798-802, April 2024

[66][J] Fu H, Dong H, Yin J, Peng L. Radio Frequency Fingerprint Identification for 5G Mobile Devices Using DCTF and Deep Learning. Entropy. 2024; 26(1):38. https://doi.org/10.3390/e26010038

[65][J] Fu H, Zhang X, Peng L. Performance Analysis of Artificial Noise-Assisted Location-Based Beamforming in Rician Wiretap Channels. Entropy. 2023; 25(12):1626. https://doi.org/10.3390/e25121626

[64][C] H. Peng, L. Peng, H. Fu, L. Xie, J. Shi and W. Jing, Channel-Robust Radio Frequency Fingerprint Identification for LTE Devices with Hybrid Feature, 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Exeter, United Kingdom, 2023, pp. 1416-1421

[63][J] Lingnan Xie, Linning Peng, Junqing Zhang and Aiqun Hu, Radio frequency fingerprint identification for Internet of Things: A survey, Security and Safety, 3 (2024).  https://sands.edpsciences.org/articles/sands/full_html/2024/01/sands20230017/sands20230017.html (欢迎大家阅读我们在射频指纹方面的最新综述文章)

[62][J] Ma, Y., Peng, L., Yin, W. et al. A High Consistency Wireless Key Generation Scheme for Vehicular Communication Based on Wiener Filter Extrapolation. Automot. Innov. (2023). https://mp.weixin.qq.com/s/SKbQrZgIA2svcgptJ4-sFw  (论文介绍参见链接)

[61][J] J. Shi, L. Peng, H. Fu and A. Hu, Robust RF Fingerprint Extraction Based on Cyclic Shift Characteristic, in IEEE Internet of Things Journal, vol. 10, no. 21, pp. 19218-19233, 1 Nov.1, 2023

[60][J] H. Fu, L. Peng, M. Liu and A. Hu, Deep Learning-Based RF Fingerprint Identification With Channel Effects Mitigation, in IEEE Open Journal of the Communications Society, vol. 4, pp. 1668-1681, 2023

[59][C] D. Li, L. Peng, H. Fu, F. Wang, Y. Tian and S. He, ESP32-based Multi-User Secret Key Generation System, 2023 8th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 2023, pp. 821-825

[58][C] W. Yin, L. Peng, H. Fu and A. Hu, Research on Key Generation Performance of Wireless Channel Based on LTE-V2X, 2023 8th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 2023, pp. 784-788

[57][C] H. Han, L. Peng, H. Fu, Y. Cheng, Y. Tian and S. He, A Highly Robust Secret Key Reconcile System Based on Cyclic Shift Buffer and HARQ Mechanism, 2023 8th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 2023, pp. 773-777

[56][C] X. Xue, L. Peng, H. Fu and A. Hu, A Doppler Reciprocity based Key Generation Method for C-V2X System, 2023 8th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 2023, pp. 794-798

[55][C] X. Meng, L. Peng, R. Song, H. Fu and A. Hu, Channel Robust RF Fingerprint Identification Method with Narrow Band Differential Constellation Trace Figure, 2023 8th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 2023, pp. 18-22

[54][C] H. Fu, J. Yin and L. Peng, RF Fingerprint Identification for 5G Mobile Device Based on Transient Features, 2023 8th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 2023, pp. 1-5

[53][C] H. Fu, X. Zhang and L. Peng, Comparison of Receiver Front-end Differences for RF Fingerprint based IoT Device Identification, 2023 8th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 2023, pp. 979-984

[52][J] Y. Xing, A. Hu, J. Zhang, L. Peng and X. Wang, Design of a Channel Robust Radio Frequency Fingerprint Identification Scheme, in IEEE Internet of Things Journal, vol. 10, no. 8, pp. 6946-6959, 15 April15, 2023

[51][C] Z. Wu, L. Peng, J. Zhang, M. Liu, H. Fu and A. Hu, Authorized and Rogue LTE Terminal Identification Using Wavelet Coefficient Graph with Auto-encoder, 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), London, United Kingdom, 2022, pp. 1-5

[50][C] Y. Xu, M. Liu, L. Peng, J. Zhang and Y. Zheng, Colluding RF Fingerprint Impersonation Attack Based on Generative Adversarial Network, ICC 2022 - IEEE International Conference on Communications, Seoul, Korea, Republic of, 2022, pp. 3220-3225

[49][C] Y. Qiu, L. Peng, J. Zhang, M. Liu, H. Fu and A. Hu, Signal-independent RFF Identification for LTE Mobile Devices via Ensemble Deep Learning, GLOBECOM 2022 - 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022, pp. 37-42

[48][C] Z. Chen, L. Peng and H. Fu, Isolated forest-based ZigBee Device Identification Using Adaptive Filter Coefficients, 2022 7th International Conference on Computer and Communication Systems (ICCCS), Wuhan, China, 2022, pp. 715-720

[47][C] M. Liu, X. Han, N. Liu and L. Peng, Bidirectional IoT Device Identification Based on Radio Frequency Fingerprint Reciprocity, ICC 2021 - IEEE International Conference on Communications, Montreal, QC, Canada, 2021, pp. 1-6

[46][C] T. Ding, L. Peng, Y. Qiu, Z. Wu and H. Fu, A Research of I/Q Imbalance based RF Fingerprint Identification with LTE-RACH Signals, 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 2021, pp. 66-71

[45][C] P. Yin, L. Peng, J. Zhang, M. Liu, H. Fu and A. Hu, LTE Device Identification Based on RF Fingerprint with Multi-Channel Convolutional Neural Network, 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 2021, pp. 1-6

[44][C] G. Shen, J. Zhang, A. Marshall, L. Peng and X. Wang, Radio Frequency Fingerprint Identification for LoRa Using Spectrogram and CNN, IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, Vancouver, BC, Canada, 2021, pp. 1-10

[43][J] H. Fu, S. Roy and L. Peng, Asymptotic Performance Analysis of MMSE Receivers in Multicell MU-MIMO Systems, in IEEE Transactions on Vehicular Technology, vol. 70, no. 9, pp. 9174-9189, Sept. 2021

[42][J] Y. Xing, T. Wang, F. Zhou, A. Hu, G. Li and L. Peng, EVAL Cane: Nonintrusive Monitoring Platform With a Novel Gait-Based User-Identification Scheme, in IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-15, 2021, Art no. 2500115

[41][J] X. Zhou, A. Hu, G. Li, L. Peng, Y. Xing and J. Yu, A Robust Radio-Frequency Fingerprint Extraction Scheme for Practical Device Recognition, in IEEE Internet of Things Journal, vol. 8, no. 14, pp. 11276-11289, 15 July15, 2021

[40][J] G. Shen, J. Zhang, A. Marshall, L. Peng and X. Wang, Radio Frequency Fingerprint Identification for LoRa Using Deep Learning, in IEEE Journal on Selected Areas in Communications, vol. 39, no. 8, pp. 2604-2616, Aug. 2021

[39][C] Y. Liu, L. Peng, S. He, Y. Tian and F. Wang, Remote Secure Communication System Based on Wireless Channel Key Generations, 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 2021, pp. 969-974

[38][J] Chen Zekun, Peng Linning, Hu Aiqun, Fu Hua, “Generative adversarial network-based rogue device identification using differential constellation trace figure”, Eurasip Journal on Wireless Communications and Networking, v 2021, n 1, December 2021

[37][C] Li Zhaosheng, Peng Linning, “Research on the design of highly random and consistent wireless key generation system”, ITAIC 2020 - IEEE 9th Joint International Information Technology and Artificial Intelligence Conference, p 1685-1690, December 11, 2020

[36][C] Wang Sheng, Peng Linning, Fu Hua, Hu Aiqun, Zhou Xinyu, “A convolutional neural network-based rf fingerprinting identification scheme for mobile phones”, IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2020, p 115-120, July 2020

[35][J] 陈超,彭林宁,张广凯,一种基于相关峰统计特征的光纤以太网设备指纹识别系统,《通信技术》,202053(02):284-292

[34][J] 季澈,彭林宁,胡爱群,王栋,基于射频信号特征的Airmax设备指纹提取方法,《数据采集与处理》,Vol.35No.2Mar.2020pp.331-343

[33][J] 袁瑞,彭林宁,李古月,付华,不同环境下无线信道密钥生成性能研究,《密码学报》2020, 7(2): 261–273 

[32][J] Peng Linning, Zhang Junqing, Liu Ming, Hu Aiqun, “Deep Learning Based RF Fingerprint Identification Using Differential Constellation Trace Figure”, IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 1091-1095, Jan. 2020

[31][C] Yao Li, Peng Linning, Li Guyue, Fu Hua, Hu Aiqun, “A Simulation and Experimental Study of Channel Reciprocity in TDD and FDD Wiretap Channels”, 2019 IEEE 19th International Conference on Communication Technology, ICCT 2019

[30][C] Wang Yufan, Peng Linning, Fu Hua, Li Guyue, Hu Aiqun, “Performance Analysis of Concatenated Error Correction Code in Secret Key Generation System”, 2019 IEEE 19th International Conference on Communication Technology, ICCT 2019

[29][C] Xing Yuexiu, Hu Aiqun, Yu Jiabao, Li Guyue, Peng Linning, Zhou Fen, “A Robust Radio Frequency Fingerprint Identification Scheme for LFM Pulse Radars”, 2019 International Conference on Wireless and Mobile Computing, Networking and Communications, WiMob 2019

[28][C] Yu Jiabao, Hu Aiqun, Zhou Fen, Xing Yuexiu, Yu Yi, Li Guyue, Peng Linning, “Radio Frequency Fingerprint Identification Based on Denoising Autoencoders”,2019 International Conference on Wireless and Mobile Computing, Networking and Communications, WiMob 2019

[27][J] Peng Linning, Li Guyue, Zhang Junqing, Woods Roger, Liu Ming and Hu Aiqun, “An Investigation of Using Loop-Back Mechanism for Channel Reciprocity Enhancement in Secret Key Generation”, IEEE Transactions on Mobile Computing, vol. 18, no. 3, pp. 507-519, Mar. 2019

[26][J] Peng Linning, Hu Aiqun, Zhang Junqing, Jiang Yu, Yu Jiabao, Yan Yan, “Design of a Hybrid RF Fingerprint Extraction and Device Classification Scheme”, IEEE Internet of Things Journal, vol. 6, no. 1, pp. 349-360, Feb. 2019

[25][C] Peng Linning, Hu Aiqun, “A Design of Deep Learning Based Optical Fiber Ethernet Device Fingerprint Identification System”. 2019 IEEE International Conference on Communications (ICC), May 2019

[24][J] Jiang Yu, Peng Linning, Hu Aiqun, Wang Sheng, Huang Yi, Zhang Lu, “Physical layer identification of LoRa devices using constellation trace figure”, Eurasip Journal on Wireless Communications and Networking, vol. 2019, no. 1, December 1, 2019

[23][C] Zhou Xinyu, Hu Aiqun, Li Guyue, Peng Linning, Xing Yuexiu, Yu Jiabao, “Design of a Robust RF Fingerprint Generation and Classification Scheme for Practical Device Identification”, 2019 IEEE Conference on Communications and Network Security (CNS), June 2019 

[22][J] Yu Jiabao, Hu Aiqun, Li Guyue, Peng Linning, “A Robust RF Fingerprinting Approach Using Multisampling Convolutional Neural Network”, IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6786-6799, August 2019

[21][C] Peng Linning, Li Guyue, Zhang Junqing, Hu Aiqun, “Securing M2M Transmissions Using Nonreconciled Secret Keys Generated from Wireless Channels”, 2018 IEEE Globecom Workshops (GC Wkshps), December 2018

[20][C] Ren Yuqian, Peng Linning, Bai Wensong, Yu Jiabao, “A Practical Study of Channel Influence on Radio Frequency Fingerprint Features”, 2018 IEEE International Conference on Electronics and Communication Engineering (ICECE), July 2018

[19][C] Yuan Yangxin, Peng Linning, “Wireless device identification based on improved convolutional neural network model”, International Conference on Communication Technology Proceedings (ICCT), October 2018

[18][J] 齐恒彭林宁姜禹, 基于临近听域超声波TDOA室内定位的实现。《数据采集与处理》, 2018, 33卷,第6期,第154-160

[17][J] Xing Yuexiu, Hu Aiqun, Zhang Junqing, Peng Linning, Li Guyue, “On radio frequency fingerprint identification for DSSS systems in low SNR scenarios”, IEEE Communications Letters, vol. 22, no. 11, pp. 2326-2329, November 2018

[16][J] Li Guyue, Hu Aiqun, Zhang Junqing, Peng Linning, Sun Chen, Cao Daming, “High-Agreement Uncorrelated Secret Key Generation Based on Principal Component Analysis Preprocessing”, IEEE Transactions on Communications, vol. 66, no. 7, pp. 3022-3034, July 2018

[15][C] Wang Dong, Hu Aiqun, Peng Linning, “Energy Selected Transmitter RF Fingerprint Estimation in Multi-Antenna OFDM Systems”, 2018 International Conference on Wireless Communications and Signal Processing (WCSP), November 2018

[14][J] 崔正阳; 胡爱群彭林宁,一种基于轮廓特征的射频指纹识别方法,《信息网络安全》,2017年,第10期,第75-80

[13][C] Peng Linning, Li Guyue, Hu Aiqun, “Channel reciprocity improvement of secret key generation with loop-back transmissions”, 2017 International Conference on Communication Technology (ICCT), October 2017

[12][J] Peng Linning, Liu Ming, Hélard Maryline, Haese Sylvain, “PN-PAM scheme for short range optical transmission over SI-POF — an alternative to Discrete Multi-Tone (DMT) scheme”, Journal of the European Optical Society, vol. 13, no. 1, December 1, 2017

[11][J] 俞佳宝, 胡爱群, 朱长明彭林宁, 姜禹,无线通信设备的射频指纹提取与识别方法。《密码学报》,2016年,第3卷,第5期,第433-446

[10][J] 彭林宁,胡爱群,朱长明,姜禹,基于星座轨迹图的射频指纹提取方法。《信息安全学报》, 2016, 1卷,第1期,第50-58

[9][C] Peng Linning, Hu Aiqun, Jiang Yu, Yan Yan, Zhu Changming, “A differential constellation trace figure based device identification method for ZigBee nodes”, 2016 International Conference on Wireless Communications and Signal Processing (WCSP), November 2016

[8][C] Yu, Jiabao, Hu Aiqun, Peng Linning, “Blind DCTF-based estimation of carrier frequency offset for RF fingerprint extraction”, 2016 International Conference on Wireless Communications and Signal Processing (WCSP), November 2016

[7][C] Li Guyue, Hu Aiqun, Zou Yaning, Peng Linning, Valkama Mikko, “A novel transform for secret key generation in time-varying TDD channel under hardware fingerprint deviation”, IEEE Vehicular Technology Conference (VTC), Fall 2015

[6][J] Peng Linning, Helard Maryline, Haese Sylvain, Liu Ming, Helard Jean-Francois, “Hybrid PN-ZP-DMT scheme for spectrum-efficient optical communications and its application to SI-POF”, Journal of Lightwave Technology, vol. 32, no. 18, pp. 3149-3160, September 15, 2014

[5][J] Peng Linning, Hélard Maryline, Haese Sylvain, “On bit-loading for discrete multi-tone transmission over short range POF systems”, Journal of Lightwave Technology, vol. 31, no. 24, pp. 4155-4165, December 15, 2013

[4][J] Peng Linning, Haese Sylvain, Helard Maryline, “Optimized discrete multitone communication over polymer optical fiber”, Journal of Optical Communications and Networking, vol. 5, no. 11, pp. 1313-1327, November 2013

[3][J] Peng Linning, Haese Sylvain, Helard Maryline, “Frequency domain LED compensation for nonlinearity mitigation in DMT systems”, IEEE Photonics Technology Letters, vol. 25, no. 20, pp. 2022-2055, 2013

[2][C] Peng Linning, Hélard Maryline, Haese Sylvain, “Optimization of multi-band DFT-spread DMT system for polymer optical fiber communications”, IEEE International Conference on Communications (ICC), June 2013

[1][C] Peng Linning, Haese Sylvain, Hélard Maryline, Liu Ming, “1.5 Gbps PN-ZP-DMT transmission system for 1-mm core diameter SI-POF with RC-LED”, 39th European Conference and Exhibition on Optical Communication (ECOC), 2013

 

 

发明专利(第一发明人或学生第一发明人)

[22] [发明公布]一种车联网加密通信方法、装置、电子设备及存储介质,申请公布号:CN116261133A,申请日:2023.02.06

[21] [发明公布]基于信号差的无线设备瞬态及稳态设备指纹提取与识别方法,申请公布号:CN114783006A,申请日:2022.04.28

[20] [发明公布]一种基于多通道卷积神经网络的射频指纹提取与识别方法,申请公布号:CN114417914A,申请日:2021.12.28

[19] [发明公布]一种基于循环移位特性的扩频信号射频指纹特征提取方法,申请公布号:CN114125853A,申请日:2021.11.05

[18] [发明授权] 一种可抗多径干扰的射频指纹提取与识别方法,授权公告号:CN112566129B,申请日:2020.12.11,授权公告日:2023.04.18

[17] [发明授权] 一种基于频偏预处理的无线设备识别方法、装置及存储介质,授权公告号:CN111866876B,申请日:2020.06.02,授权公告日:2023.02.28

[16] [发明授权] 一种基于射频指纹的无人机身份认证方法,授权公告号:CN110087233B,申请日:2019.03.28,授权公告日:2022.06.24

[15] [发明授权] 一种基于OFDM前导码的抗多径干扰射频指纹提取方法,授权公告号:CN110061947B,申请日:2019.03.28,授权公告日:2021.09.07

[14] [发明授权] 一种用于物理指纹提取的临近符号星座轨迹图生成方法,授权公告号:CN109756439B,授权公告日:2021.06.11,申请日:2019.01.29

[13] [发明授权] 基于混合输入信息的无线设备识别分类器的预处理方法,授权公告号:CN108234044B,授权公告日:2021.01.05,申请日:2018.02.02

[12] [发明授权] 基于差分星座轨迹图的无线设备瞬态特征提取与识别方法,授权公告号:CN108173792B,授权公告日:2020.09.15,申请日:2017.12.20

[11] [发明授权] 基于网格统计星座轨迹图的密钥生成方法和通信设备,授权公告号:CN111431720B,授权公告日:2020.09.04,申请日:2020.06.12

[10] [国际PCT专利] Information Transmission Method Based on Wireless Channel Feature Quantized Asymmetric Private Keys,国际公布号:WO 2019/148690 A1,国际公布日:2019-8-8,彭林宁 胡爱群

[9] [发明授权] 一种基于无线信道特征量化私有不对称密钥的信息传输方法,授权公告号:CN108366370B,授权公告日:2019.08.02,申请日:2018.02.02

[8] [发明授权] 一种基于设备物理指纹特征的目标识别定位系统及方法,授权公告号:CN107368732B,授权公告日:2019.07.23,申请日:2017.07.14

[7] [发明授权] 一种融合私有信息的共享密钥安全通信方法,授权公告号:CN104717074B,授权公告日:2019.06.25,申请日:2015.04.02

[6] [发明授权] 一种基于星座轨迹图的无线设备身份识别方法,授权公告号:CN105631472B,授权公告日:2019.06.11,申请日:2015.12.24

[5] [发明授权] 一种基于星座轨迹图的I/Q偏移量及畸变估计方法,授权公告号:CN105979520B,授权公告日:2019.04.19,申请日:2016.04.28

[4] [发明授权] 一种利用信道特性的安全传输消息方法,授权公告号:CN106102049B,授权公告日:2019.02.05,申请日:2016.06.06

[4] [发明授权] 联合时频双工的共享信道特征获得方法,授权公告号:CN105099640B,授权公告日:2018.09.28,申请日:2015.08.28

[3] [发明授权] 基于差分星座轨迹图的无线设备射频指纹特征提取方法,授权公告号:CN105357014B,授权公告日:2018.09.21,申请日:2015.11.25

[2] [发明授权] 用于生命体征测量波形数据的前向抗丢帧无线传输方法,授权公告号:CN104980253B,授权公告日:2018.07.27,申请日:2015.05.28

[1] [发明授权] 基于判决反馈的扩频信号频率偏移估计方法,授权公告号:CN105471470B,授权公告日:2018.02.02,申请日:2015.11.18

其他